How to challenge a scientific theory, method 2: propose an alternative

How do you respond to a scientific theory, such as evolution, with which you disagree?

So far, we have looked at the basic rules of honesty and accuracy that your challenge needs to obey, and one way in which you can challenge the theory by presenting some evidence that contradicts it. We discussed what does and does not count as evidence, and what kinds of standards evidence needs to meet in order to actually contradict a theory.

This week, we will take a look at another way to argue against a scientific theory: by proposing an alternative.

What kind of alternative?

Now just as you can’t cite any old rubbish as evidence against a theory that you don’t like, in the same way you can’t just postulate any old nonsense as a legitimate alternative. If you could, then you would be able to claim that bananas are marsupials, that cars run on gravy, and that salmon live in trees and eat pencils. That is hardly a recipe for being taken seriously by anyone.

No, your theory needs to meet a few basic requirements.

1. It must explain all the evidence that the existing theory explains, in at least as much detail.

It is not sufficient to come up with an overarching explanation that only paints broad brush strokes. Your theory needs to be able to drill right down into the details, at least as far as the existing theory reaches. Where measurements are involved, your alternative needs to be able to account for the precise values, including any patterns and trends that are evident in the data.

This means that you need to understand, at least generally, just how much evidence the existing theory explains, in how much detail, and with how much precision, because that is the bar that is set for your alternative. The more evidence that the existing theory explains, the higher the bar becomes and the harder it gets to devise a credible alternative.

2. It must make testable predictions.

Your theory is not of much use if it is not testable. It is even more useless if the theory you are challenging has a successful track record of making testable predictions of its own. Furthermore, the predictions that your alternative makes must be at least as precise as the predictions made by the original theory.

In many cases, the predictions that the original theory makes even have commercial value. Oil exploration is one such example. If this is the case, then you need to be able to demonstrate that the predictions made by your alternative can do the same. When science meets business, your theory will only get taken seriously if it can do one of two things: decrease costs, or increase revenue.

3. It must be consistent with the rest of science.

Consilience is one of the most important rules of science. Whatever model you come up with must be consistent, both with itself and with every other area of science that you are not challenging.

Science is not a collection of independent systems, each acting in isolation from each other. It is a unified whole, in which every constant, every equation, every mechanism, every effect, is interrelated with the others. Changing one factor will have a knock-on effect on just about everything else imaginable.

Take, for example, the fundamental constants of nature, such as the speed of light. Could this have been any different in the recent past from what they are today, as people such as Barry Setterfield claim? The problem here is that these constants all depend on each other. For example, the speed of light itself is related to the electrical permittivity and the magnetic permeability of a vacuum:

c = \frac 1 { \sqrt { \mu_0 \epsilon_0 } }

It determines the relationship between mass and energy, as Einstein’s famous equation spells out:

e = m c^2

It determines the fine structure constant, a value that itself determines the chemical properties of the elements:

\alpha = \frac {e^2} {4 \pi \epsilon_0 \hbar c }

Now you may not know exactly what all these equations and symbols mean, but it only takes some basic understanding of school-level algebra to see that when you change one of them, it has a knock-on effect on all the others. This means that even minor changes to the speed of light in the recent past would have had very, very far reaching and dramatic consequences. Any theory that postulates that the speed of light, or nuclear decay rates, could have changed needs to be able to fully account for these consequences.

A theory that only explains one thing in grand isolation from everything else is not going to cut it. Introducing one new law of physics to try and accommodate your alternative explanation usually means that you have to add other new laws of physics to accommodate the knock-on effects from your first new law, and then to add on other new laws of physics to accommodate their knock-on effects, and it all very, very quickly spirals into absurdity.

A tall order?

If all this sounds like a tall order, then perhaps it is. But it is a fair one. These are simply the standards that the theory you are challenging had to meet in the first place. Science is far, far more rigorous than most lay people believe it to be. The scrutiny is far more stringent, and the standards of quality control are far higher. That is why so many people give up on science at the first possible opportunity at age sixteen: they find its exact standards too easy to get wrong and too difficult to get right, so instead they choose to specialise on easier subjects that concern the vagaries of humans and other living beings instead.

But if you are to challenge a scientific theory, you do need to allow your challenge to be subjected to the same level of rigour and scrutiny as the theory itself. If your challenge stands up to scrutiny, then you’re onto a winner (and possibly even a Nobel Prize). On the other hand, if your challenge can’t pass the test, then perhaps you need to acknowledge that the theory you are challenging is more robust than you thought it was.

Featured image: The Large Hadron Collider. Photo courtesy of CERN.

How to challenge a scientific theory, method 1: Evidence that contradicts it

So you are faced with a scientific theory, such as evolution, that you do not agree with. There are two ways in which you can challenge it:

  1. You can present some verifiable facts or evidence that contradict it.
  2. You can propose an alternative theory that provides a more accurate and precise explanation for the evidence.

However, as we saw last week, you can’t just respond with any old nonsense. Not everything is a verifiable fact, not every verifiable fact contradicts your theory, and not every alternative theory provides a better explanation for the evidence than the one you are trying to argue against. Accordingly, whichever of these two approaches you take, there are rules that you must stick to.

This week, we will look at the first of two ways in which a scientific theory can be challenged: point out a verifiable fact that contradicts it.

What kind of evidence?

Now you may have a few candidates in mind here. Piltdown Man, Nebraska Man, Mount St Helens, the Second Law of Thermodynamics, moon dust, or a hammer from Texas encased in a rock. However, before you start triumphantly waving these things around, you need to make sure that (a) they really are facts, and (b) that they really do contradict the theory.

This means that you need to make sure that you correctly understand what the theory says. Far too many amateur apologists skip this step, and as a consequence end up attempting to debunk nonsensical cartoon caricatures of evolution that look more like something out of Star Trek than anything taught about it in schools and universities.

You must also make sure that the facts that you are bringing to the table concern something that is essential to the theory. In other words, they need to overturn the core fundamentals, and not just one side detail. You don’t chop down a tree in its entirety by cutting off leaves, twigs, or even branches.

This is why, for example, Piltdown Man is not a valid argument against evolution. It doesn’t address the underlying mechanisms, but only the fine detail of exactly what one particular species did (or, in this case, didn’t) evolve into. It may have been famous, but it was still only one data point among millions — nowhere near being a devastating blow to evolutionary biology. A single data point, or a tiny sample with huge error bars, is rarely if ever enough to overturn a scientific theory. Your standards of rigour and quality control need to match those of the studies in favour of the theory at the very least.

Things that are not contradictory evidence

This brings me to my third point. In order to contradict a scientific theory by presenting evidence against it, you need to understand what does or does not constitute contradictory evidence. Science is not like law, politics or the arts; it does not proceed on the basis of who sounds more convincing, but on the basis of what obeys the rules.

Here are some examples of arguments that are not valid objections to a scientific theory.

1. Politics, opinions or worldviews. Scientific theories are not political narratives. Nobody gets to vote on gravity, Maxwell’s Equations, the Second Law of Thermodynamics, or quantum mechanics. Scientific theories stand or fall on whether they accurately explain the available evidence, and on whether they can consistently and accurately make testable predictions. And they work in exactly the same way regardless of whether you are a Christian, a Jew, a Muslim, a Hindu, an atheist, or a Tauri-Hessian tractor worshipper. What you believe about who did or did not evolve from what does not make a whit of difference to who actually did or did not evolve from what, regardless of whether you are Ken Ham or Richard Dawkins, the Dalai Lama or the Pope, Donald Trump or Joe Biden.

Politics, opinions and worldviews may influence how we respond to scientific findings, such as man-made climate change or wearing masks to prevent the spread of covid-19. But they do not challenge the findings themselves. Especially not when they have been established and refined over more than 150 years and have a lot of other scientific research that depends on them.

2. Common sense. Science is not intuitive. It is very mathematical and technical. There are many phenomena that work in ways that you would not expect or that are completely outside of our everyday realm of experience. This is especially true at very small scales (e.g. quantum mechanics) or at very large scales (e.g. general relativity, geologic time). It is also very precise and rigorous. There is a reason why so many people give up maths and science at the first opportunity when they are sixteen. They are subjects that are easy to get wrong and difficult to get right.

For this reason, mathematical arguments require a mathematical response. Attempting to argue against mathematics with appeals to “common sense” is called “hand-waving,” and it will just make you sound like a crank.

3. Unanswered questions or gaps in the theory. Scientific theories are not overturned by unanswered questions, but by contradictory evidence. No scientist claims to have all the answers, and no scientific theory is complete, nor ever will be. But that is why people do PhDs. Unanswered questions are only of value in challenging a scientific theory if the lack of an answer is in itself evidence of a contradiction.

4. Answered questions. If you must ignore point 3 and ask unanswered questions anyway, at least make sure that they actually are unanswered. The question “What use is half an eye?” for example is well understood, and was even answered by Darwin himself in On the Origin of Species. If you believe the answer to be inadequate, then by all means go ahead and give a coherent explanation of why it is inadequate, but to act as if the answer does not even exist when in reality it does will just make you look like you haven’t a clue what you are talking about.

5. An absence of unnecessary evidence. Absence of one particular line of evidence is only a legitimate argument against a scientific theory if the missing evidence is something that the theory tells us we should expect to see. For example, the fact that we haven’t made direct observations of the Oort Cloud, when we do not have the technology to do so, does not prove that it does not exist, especially when it is supported by indirect evidence. On the other hand, we would expect to find vast swathes of easily sequenceable dinosaur DNA if the earth really were six thousand years old. But we don’t.

For what we should expect to see in the fossil record, Scott Buchanan has a fairly comprehensive article on his site, Letters to Creationists: Realistic Expectations for Transitional Fossils.

6. Assumptions or interpretations. A scientific theory is not falsified merely by the fact that it makes assumptions or interpretations. In order to falsify a scientific theory by attacking its assumptions, you must (a) state what those assumptions are, (b) make sure that the theory really does make those assumptions in the first place, and (c) provide evidence that the assumptions are invalid.

However, it is important to remember that there is a difference between “doesn’t always work” and “never works.” Just because an assumption breaks down in specific situations does not mean that it is invalid everywhere else. For example, we know that carbon-14 dating doesn’t work on marine life due to the marine reservoir effect. But that does not mean that it doesn’t work on terrestrial plant and animal remains. And it certainly does not mean that uranium-lead dating does not work on zircon crystals in granites.

Assumptions and interpretations may indicate that other alternatives are possible, but only if those alternatives are mathematically coherent and consistent with the evidence. We will look at this possibility next week.

7. Ambiguous evidence. Evidence does not falsify a theory merely because it is consistent with another, alternative hypothesis. For example, just because some things (such as oil or apparently fossilised teddy bears) can form quickly, that does not mean that everything actually did form quickly. Especially when there are other things that can not, such as lead in zircons, or Widmanstätten patterns in meteorites.

8. The fact that it is a theory. The word “theory” does not mean the same in science as its colloquial everyday use. A scientific theory is not a guess, it is not a just-so story, and it is not something that someone just pulled out of their backside. On the contrary, it is an explanatory framework that is well supported by evidence and that has a successful track record of making accurate testable predictions. In other words, it is, to all intents and purposes, an established fact.

The scientific term for something that has not yet been established by evidence is a “hypothesis.” And no, something doesn’t get downgraded from a theory to a hypothesis just because you, as a non-scientist, call it that. Calling something a hypothesis when it is, in fact, a theory, is not getting your facts straight.

9. Occasional acts of scientific misconduct or fraud, unless you can demonstrate that either (a) the fraud is pervasive and systematic across the entire discipline, or (b) the fraudulent material is essential to the theory. There are millions of scientists in the world, and inevitably there will be a few bad eggs among them. But that doesn’t mean that the entire discipline is rotten to the core.

10. Undesirable consequences. We don’t claim that gravity is wrong just because someone falls off a ladder and ends up in a wheelchair, and we don’t claim that atomic theory is wrong just because Kim Jong-Un is building nuclear weapons. In the same way, the fact that some people have cited evolution as justification for eugenics, human extinction, or other bad behaviour, does not call into question the fact that biological populations change over time, and have been doing so for millions of years.

11. Character flaws of famous scientists. Facts do not change just because the person who discovered them was a socialist (like Albert Einstein), or a eugenicist (like Francis Crick), or a generally abrasive person (like Isaac Newton). In the same way, allegations that Darwin was a racist, even if true, are not valid arguments against the theory of evolution.

12. Non-specific or unrelated changes in the scientific consensus. You can’t just dismiss anything and everything about science that you don’t like by glibly saying “facts change” or “science changes” or “scientists are always changing their minds.” Scientists only change their minds about things if evidence demands it, and even then only in a controlled and methodical manner. In the same way, if you want to effect a change to the scientific consensus yourself, you must provide evidence to support the change that you want to see, and make sure that you follow the rules when making your case.

13. “Were you there?” There are ways of testing things that do not require you to have “been there.” Repeatability does not require you to control and observe a process all the way from start to finish. In any case, to the extent that it does have any merit, “were you there?” is nothing more than an unanswered question, which brings us back to point 3 above: scientific theories are not refuted by unanswered questions, but by contradictory evidence.

14. Magic shibboleths. More generally, if you think a clever-sounding one-liner (for example: “it’s just an assumption”, “it’s just an interpretation” or “were you there?”) refutes any and every argument that you haven’t otherwise thought of, it almost certainly doesn’t. I’m sorry, but there are no shortcuts for doing your homework.

15. One single data point. Reproducibility is fundamental to science, and scientific theories are never established or overturned on the basis of a single study by a single research team, especially not if the “other side” has hundreds or even thousands of other data points in its support. In such cases, the single data point is almost certainly a result of experimental error rather than a radical new law of physics. And if you only have a tiny minority of anomalous data points, the chances are that you have only discovered a corner case, for which the correct response is to refine the theory, not to throw it out altogether. Especially if the anomalies are relatively small.

Next week I will look at another option that you have when faced with a scientific theory that you disagree with: proposing an alternative. But just as with providing contradictory data, that too needs to stick to the rules.

Featured image: Folded Precambrian rock formation in the Grand Canyon, showing clear evidence of fracturing in the fold of the rock. Photograph by the US Geological Survey.

How to challenge a scientific theory

So you are confronted with a scientific theory, such as evolution or man-made climate change, that you don’t agree with. How do you respond to it?

If there’s one thing that we should all agree on, no matter how old we believe the earth to be, or who or what we believe did or did not evolve from what, it is that you can’t just spout any old rubbish in support of your position. It should go without saying, for example, that you can’t cite mermaids as evidence for a young earth — or indeed for anything else, for that matter. Nonsensical or easily falsified claims will just undermine your credibility.

Even the young-earth creationist organisations acknowledge this. Creation Ministries International has an entire web page listing arguments that they think creationists should not use. While they are to be commended for attempting to filter out at least some of the bad arguments, they give no guidance or underlying principles about what differentiates bad arguments from good ones. Why, for example, do YEC organisations tell us that moon dust is a bad argument, but at the same time that ocean sediment is not?

But the fact remains that science — or, more to the point, just basic honesty — has rules, and if you want to challenge a scientific theory without coming across as either clueless or an outright liar, you must stick to them.

In this series of posts, I will explain what a successful challenge to a scientific theory does or does not look like. First, we need to establish the basic ground rules.

1. Your account of the theory must be accurate.

The first thing that you must do is make sure that you are challenging what the theory says in reality, and not an incorrect cartoon caricature of it. Attempting to debunk something that no real scientist does or teaches is called a straw man argument, and it is a form of lying. So for example, don’t start claiming that “fossils are used to date rocks and rocks are used to date fossils,” and don’t start describing evolution as “a cat turning into a dog” or “a cat giving birth to a dog.” Stratigraphy and evolution do not work like that.

This means, for starters, that you need to understand how science works in general. Science is not intuitive; it is very mathematical and technical, very exact and rigorous. It is also very hands-on and practical, and often involves working in situations where getting scientific theory and practice wrong, even in seemingly minor ways, can have real-world consequences for which you could be held personally responsible. This gives you an understanding of science in general that you simply don’t get from watching YouTube videos, reading books, or listening to sermons. It means, for starters, that you simply cannot afford to tolerate sloppy thinking, factual inaccuracy, intellectual dishonesty, or insufficient scrutiny when it comes to anything science-related.

Similarly, if you are going to claim that a theory, such as evolution, contradicts another theory, such as the Second Law of Thermodynamics, you must make sure that you have understood the other theory correctly, and that you are taking into account its limitations and preconditions. Besides ignoring the fact that the earth receives energy from the sun and then radiates it back out into space, arguments about the Second Law of Thermodynamics also ignore the fact that entropy is quantifiable. There is only one correct way to determine whether or not the Second Law of Thermodynamics contradicts the theory of evolution, and that is to do the maths.

2. Your account of the evidence must be accurate.

It should go without saying, but denial of verifiable facts will just cost you credibility. No matter how strongly you disagree with a theory, it is never acceptable to respond to it by making things up, inventing your own alternative reality, or telling outright lies.

So for example, before you claim that evidence (such as transitional fossils) does not exist, first make sure that it doesn’t actually exist in reality. Anyone listening to you can type “transitional fossils” into Google on their mobile phone as you speak. You will need to have a very good explanation as to why every result that comes back is not a transitional fossil. Similarly, before claiming that something is untestable, make sure that nobody has actually proposed a test for it.

Make sure too that evidence that you cite is exactly as you describe it. Claiming that a rock formation is not fractured, when photographs exist that clearly show otherwise, is lying, especially if you yourself have visited the rock formation in question on multiple occasions. Another example where we commonly see misrepresentation is claims of soft tissue in dinosaur fossils. Make sure that you are reporting the state of the remnants accurately. Remember, for example, that fossilised skin is not actual skin, haemoglobin breakdown products are not actual haemoglobin, and tiny structures that float in a demineralising solution are not fresh dinosaur meat.

3. Your quotations must be accurate.

Before you include a juicy quote in your challenge, make sure that it accurately reflects the context from which it was originally taken.

Quote mining — quoting scientists out of context in ways that disregard or distort the point that they were actually trying to make — is one of the biggest mistakes that people make when trying to challenge scientific theories or methods. It is an easy trap to fall into, especially if you are approaching science as some sort of “ammunition gathering exercise.” People who do it often justify it in terms of exposing the “true thoughts” of the scientists they are quoting, which they are supposedly only not admitting because they don’t want to lose their jobs.

Make no mistake about this: Quote mining is lying. Even if the mined quote did represent the source’s “true thoughts,” this is rarely if ever spelt out explicitly, let alone justified. Many examples routinely take completely unconscionable liberties with their sources, rewording things, missing things out, or in some cases outright making things up.

One common hallmark of quote mining is a lack of transparency about where the reference actually came from. References are frequently not cited, and even when they are, the citations are often unclear. Here is an article, for example, whose nine footnotes all reference lengthy sections between 16 and 60 pages long in expensive geology textbooks. While that in itself does not necessarily mean that there is any misrepresentation going on, without access to a university library and a lot of spare time on your hands, it is very difficult to check.

If you quote anybody for any reason, always make sure that you stick to the following rules:

  1. Stick to sources that can be easily located and checked by your target audience.
  2. Provide a precise, easily accessible link or reference directly to the original.
  3. Make sure that the original says exactly what you are quoting it as saying.
  4. Make sure that the part that you are quoting accurately represents the context from which it was taken.
  5. Make sure that you are accurately describing the views of the person you are quoting. For example, be careful not to describe them as an “evolutionist” if they are actually a creationist or an ID advocate.
  6. If you do believe that you are justified in taking the quote out of context nonetheless as a representation of the source’s “true thoughts,” make it explicit that that is what you are doing. Acknowledge the context from which the quote was taken, and provide additional evidence to justify your claim that your extract really does represent their “true thoughts.”

4. Your measurements must be accurate.

This is what the Bible has to say about measurement:

¹³Do not have two differing weights in your bag — one heavy, one light. ¹⁴Do not have two differing measures in your house — one large, one small. ¹⁵You must have accurate and honest weights and measures, so that you may live long in the land the Lᴏʀᴅ your God is giving you. ¹⁶For the Lᴏʀᴅ your God detests anyone who does these things, anyone who deals dishonestly.

Deuteronomy 25:13-16

These are not verses that you can fob off as being taken out of context. They come from a passage that consists of a number of laws and regulations concerning a variety of different aspects of life in general. In any case, even if they did have some specific contexts in mind, to argue that they only applied to some contexts but not to others would be to openly advocate lying. No, these verses apply to every context. No exceptions, no excuses.

And measurement is fundamental to science. In fact, honest and accurate weights and measures are what science is all about.

This means that if you are going to address a scientific theory, you must address them in terms of addressing the underlying measurements. Your challenge must obey the rules of measurement and mathematics.

One such rule, for example, is that measurements have error bars. Error bars are determined by taking a range of measurements and using a formula called the standard deviation to determine how tightly they cluster around the average value. This gives an indication of precisely how reliable (or unreliable) your measurement is. You cannot claim that your measuring technique is significantly more unreliable than that.

In other words, errors of just a few percent in a minority of cases do not justify claims that everything is consistently out by a factor of a million, right across the board.

So, having established the ground rules that your challenge must obey, how can you actually go about it? There are two basic ways of challenging a scientific theory, and next week we shall look at the first: providing evidence that contradicts it.

Featured image: The Pillars of Creation. Photo by NASA, ESA and the Hubble Heritage Team.

Some advice for scientists in the church

When I wrote my advice for pastors on how to handle science, I made a number of suggestions. I said that they should not be afraid to admit that they don’t know what they don’t know; that they should seek counsel in scientific matters from professional scientists in the church; and that they should not allow anyone with no scientific training to teach about science in their churches. I also followed up a few months later with some advice for non-scientists in general. But what about scientists in the church?

When I first started discussing creation and evolution on Facebook about three years ago, my plea then — as it is now — was for honesty and factual accuracy in the claims that we are making. While this plea was mostly well received by my friends in the church, I did experience some push-back from young-earth creationists, who duly trotted out the usual arguments from Answers in Genesis and their ilk.

This was, of course, only to be expected. But what shocked me the most was the biochemist who told me that he found the argument for a young Earth from population growth to be convincing — and reminded me that he was a scientist.

Ignorance or dishonesty?

Now I don’t expect non-scientists to be able to see the problem with the population growth argument — or indeed, any other bad argument. They don’t have the skills, training and experience to be able to do so. When presented with evidence that contradicts them, they can always excuse themselves by saying that they’re not scientists, and it’s all too complicated for them.

You and I do not have the luxury of that excuse.

Fellow Christians who are scientists, or who have any form of scientific training, listen to me very carefully here. If you tell me that you are a scientist, you are telling me that you understand the basic rules and principles of how measurement works. You are telling me that you are mathematically literate. You are telling me that you understand error bars, extrapolation, statistics, confidence levels, sample sizes, controls, random errors, systematic errors, signal to noise ratios, the difference between necessary and sufficient conditions, and the like. You are telling me that you have the understanding necessary to fact-check your claims, to consult their original sources and check that they say what they are being made out to say. You are telling me that you have been trained in the kind of rigorous and exact thinking that science demands. You are telling me that you understand what distinguishes a good argument from a bad one.

Anyone with that level of understanding should spot the flaw in the population argument immediately. The Earth’s population has not always increased exponentially throughout history. There have been times when it went down as well as up, such as during the Black Death outbreak from 1347 to 1351. The rate of change has increased substantially since the Industrial Revolution as technology and medical care have improved. Furthermore, in pre-agricultural times, it could well have simply fluctuated over the many millennia of hunter-gatherer societies without seeing any long-term growth at all. The extrapolation is simply not valid.

A claim such as this would merely be ignorance if it were made by a non-scientist. But for a scientist to make arguments such as this one, knowing full well that measurement and mathematics do not work like that, is dishonest.

The scientist’s responsibility

As a scientist, you will no doubt find that your pastor, or your friends in your church, look to you for guidance on scientific matters from time to time. This being the case, you have an extra responsibility before God to take extra care that your advice is honest and factually accurate.

Now to be fair, some claims (such as the RATE project’s research on helium diffusion in zircons) are complex and difficult to fact check. Some may require specialist knowledge or even field research to examine the evidence for yourself. But other claims are blatantly and obviously untrue. Sample sizes may be obviously tiny. Error bars may be obviously huge. Assumptions may be obviously invalid. Claims about the evidence itself may be obviously exaggerated or even outright untrue. Evidence contradicting them may be no more than a Google search away. They may contain obvious misunderstandings or misrepresentations of what scientists actually teach about evolution, or rhetorical questions whose answers are readily available on Wikipedia. (The classic question “what use is half an eye?” — which was convincingly answered by Darwin himself in On the Origin of Species — is one such example.)

As a scientist, you have a responsibility to advise your pastor how to avoid such bad arguments. If they end up making ridiculous and easily falsified claims, and losing credibility as a result, you are responsible if you endorsed those claims, or if you advised them that those claims were satisfactory or convincing.

As a scientist, you are a professional. Your professional responsibility does not end when you leave the laboratory and enter the church. On the contrary, within the church, you are in a position of trust, whether you like it or not. Be very careful that you are not abusing that trust.

Featured image: United States Air Force Academy

What, exactly, do you mean by “Darwinism”?

Now I’m generally more patient with Intelligent Design than with young earth creationism.

That doesn’t mean I think they’re perfect. There are some things about the ID community that trouble me: when I read articles on sites such as Evolution News, half the time I’m left with the impression that I’m reading tabloid rhetoric rather than scholarly analysis. But I’m not one for throwing out the baby with the bathwater, so if they have something constructive to say, then I’m prepared to consider it.

But there is one aspect of ID arguments in particular that leaves a bad taste in my mouth. This is their use of the terms “Darwinism” and “neo-Darwinism”. You see this, for example, in the Scientific Dissent from Darwin, which was signed by a few hundred ID-supporting scientists, engineers, surgeons and other academics.

Rejecting Darwin but accepting common ancestry

Here’s a question for you. Without looking it up, or consulting Google, what, exactly, do you think that the Scientific Dissent from Darwinism was objecting to?

Chances are that you will be thinking something along the lines of “macroevolution rather than microevolution.” You probably think that they were objecting to common ancestry of chimps and humans. You may even think that they were objecting to geologic time.

Certainly, the chances are that half the people in your church think that.

If that is what you think, you’re in for a shock. Many of the signatories of the Dissent from Darwin affirm universal common ancestry of all life on earth, humans and animals included. One prominent example is Michael Behe, the chief architect of the “irreducible complexity” argument, which says that the bacterial flagellum is too complex to have evolved fron scratch.

How can this be?

It all becomes clear when you see exactly what they actually mean by “Darwinism”:

“We are skeptical of claims for the ability of random mutations and natural selection to account for the complexity of life. Careful examination of the evidence for Darwinian theory should be encouraged.”

This is a very broad definition. It only says that Darwinian evolution is an incomplete theory of the origins of biological diversity. It does not say that it is incorrect. As such, it encompasses most evangelical Christian viewpoints on origins, from young-earth creation right through to theistic, God-guided evolution.

This is not what most of their audience expect.

The fact of the matter is that the words “Darwinism” and “neo-Darwinism” are weasel words. They give the impression of meaning something specific, when in reality their true meaning is much more vague and ambiguous. The result of this is that there are many, many well meaning Christians who honestly and sincerely believe that evolution is “a theory in crisis” within the scientific community and that “scientists are always changing their minds,” when nothing could be further from the truth.

ID supporters, please don’t do this. You may think you’ve exonerated yourselves by clearly defining your terms, but if your definitions are not what your audience expect, you will still be misleading them. If you have a problem with evolution yourself, that’s fine. Just state clearly and unambiguously, exactly which aspects of the theory you are sceptical about and why. But be careful not to leave people with the impression that your scepticism runs deeper than it really does. And don’t try to give people the impression that the scientific community shares your scepticism when it does not. Don’t try to manufacture an inflated controversy where there is none to begin with. Because that is simply not honest.

And for that reason, I feel that the words “Darwinism” and “neo-Darwinism” are probably best avoided.